Detailed Energy Audit Report

Submitted to

Nehru Memorial Government

College, Mansa

Prepared and Submitted by

Indona Innovative Solutions

8/W-11, Railway Road, Dinanagar, Punjab- 143531

TABLE OF CONTENTS

ACKNOWLEDGEMENT	4
EXECUTIVE SUMMARY	5
1. INTRODUCTION	7
1.1. INTRODUCTION ABOUT GOVT. RIPUDAMAN COLLEGE, NABHA	7
1.2. CLIMATE CONDITION OF MANSA	8
1.3. MAJOR ENERGY USE AREAS	9
1.4. KEY INITIATIVE TAKEN BY COLLEGE TOWARDS ENERGY CONSERVATION	10
2. ENERGY AUDIT APPROACH AND METHODOLOGY	11
2.1 Арргоасн	11
2.2 MEHODOLOGY	11
2.3 INSTRUMENTS USED FOR ENERGY AUDIT	12
3. ELECTRICAL SYSTM AND BILL ANALYSIS	13
3.1. ELECTRICAL SYSTEM	13
3.2. Electricity Bill Analysis	14
3.3.1 Maximum Demand Pattern	16
3.3.2 Energy Consumption Pattern	17
3.3.3 Power Factor Pattern	18
4. PERFORMANCE ASSESSMENT OF UTILITIES	19
4.1 MAIN INCOMER SUPPLY	19
4.2 QUALITY OF ELECTRICAL DISTRIBUTIONS SYSTEM	20
4.3 POWER QUALITY	21
4.2.1 LOAD VARIATION	21
4.2.2 VOLTAGE UNBALANCE	22
4.2.3 CURRENT UNBALANCE	24
4.2.4 POWER FACTOR VARIATION	25
4.2.5 HARMONICS LEVEL	26
4.3 DIESEL GENEARTING SETS	28
4.4 AC UNITS	29
4.5 LIGHTING	30
4.6 FANS	32
4.7 COMPUTERS AND MULTI-FUNCTION DEVICES	33
4.8 MISCALANEOUS LOAD	33
5. ENERGY EFFICIENCY MEASURES	34
5.1 REDCUCTION IN CONTRACT DEMAND FROM 112KVA TO 55KVA TO REDUCE THE FIXED CHARGES	34

5.2	IMPROVEMENT IN ANNUAL AVERAGE POWER FACTOR FROM 0.80 TO 0.99 BY INSTALLING 40KVAR APP	C AT MAIN
INCO	MER	35
5.3	ENSURING SWITCHING OFF THE LIGHTS WHEN THERE IS NO OCCUPANCY IN THE RESPECTIVE CLASS ROOM (OR OFFICE
AREA	\s36	
5.4	REPLACEMENT OF THE CONVENTIONAL LIGHTS (FTL- 12 AND T- 8) WITH NEW (20W LED) ENERGY EFFIC	IENT
LIGH	TS	37
5.5	REPLACEMENT OF 50 NUMBER OF OLD CEILING FANS WITH NEW 35W ENERGY EFFICIENT BLDC FANS	38
5.6	INSTALLATION OF 45.0KWP CAPACITY GRID CONNECTED SOLAR PV SYSTEM FOR LIGHTING LOAD AND O	THER LOAD
	39	
5.7	INSTALLATION OF ENERGY MONITORING SYSTEM	41
<u>6.</u>	ANNEXURE	42
6.1	COPY OF ELECTRICITY BILL	42
6.2	REGISTRATION OF FIRM WITH BEE	43
6.3	ISO CERTIFICATE OF THE FIRM	44
6.4	LIST OF VENDORS	45
6.5	Onsite Measurements	46
нст	OF TABLES	
	e 1: List of Energy Conservation Measures	5
	e 2: Connected load in the campus	5

Table 2: Connected load in the campus	9
Table 3: Type of Project Category and PBP	11
Table 4: Energy Bill Components	14
Table 5: Major Components of Electricity Bill	15
Table 6: THD parameters measured at main incomer	27
Table 7: Connected load of AC units	29
Table 8: Connected Lighting Load	30
Table 9: Measured Lux level	32
Table 10: Connected Fan Load	33
Table 11: Details of water cooler	33
Table 12: Details of miscellaneous load	33

LIST OF FIGURES

Figure 1: Arial view of the Campus	7
Figure 2: Annual temperature profile of Mansa	8
Figure 3: Percentage share of different loads	
Figure 4: Glimpse of Energy Conservation activities	10
Figure 5: Methodology for Energy Audit	11
Figure 6: LT Panel Installed in NMC, Mansa	13
Figure 7: Month wise Maximum recorded demand	
Figure 8: Month wise Energy Consumption kWh and kVAh	17
Figure 9: Month wise Power Factor	18
Figure 10: Position of Power Analyzer	19
Figure 11: Trend of Load variation at main incomer	21
Figure 12: Relation between Voltage Unbalance and Temperature rise	
Figure 13: Trend of Voltage Unbalance at main incomer	23
Figure 14: Trend of the current unbalance	
Figure 15: Power factor measurement at main incomer	
Figure 16: Harmonic distortion of the Waveform	26
Figure 17: Sample Performance Assessment Sheet for DG Set	
Figure 18: Percentage share of different lighting	30
Figure 19: Reduction in contract demand	
Figure 20: Improvement in Power Factor	35
Figure 21: Grid Connected Hybrid SPV System	40
Figure 22: EnMS Report Snapshot	41

GLOSSERY

APFC	Automatic Power Factor Correction Capacitor
DBT	Dry Bulb Temperature
DG	Diesel Generator
EL	Electronics
HSD	High speed diesel
HT	High Tension
HV	High Voltage
LT	Low Tension
LV	Low Voltage
MDI	Maximum Demand Index
PA	Power Analyzer
PBP	Payback Period
PSPCL	Punjab State Power Corporation limited
RH	Relative Humidity
SB	Stand By
SDA	State Designated Agency
SPV	Solar Photo Voltaic
THD	Total Harmonics Distortion
VFD	Variable Frequency Drive
WBT	Wet Bulb Temperature

ASSUMPTIONS FOR CALCULATIONS

Description	Value	
Operating days per annum	300	
Average Operating hours per day	6.0	
Unit Cost, Rs./kVAh	6.63	

ACKNOWLEDGEMENT

Indona Innovative Solutions is thankful to Nehru Memorial Government College for providing an opportunity to conduct Detailed Energy Audit Study at college campus located at Barnala Road, District Mansa, Punjab - 151505.

We take the opportunity to express our profound gratitude towards Mrs. Lovleen (Principal) for award of work. We are also very thankful to her for her advice and valuable support extended to this project.

We are also grateful to Mr. Sukhdeep Singh (Professor Punjabi Department) for his valuable time and actively participation in discussion with audit team with tremendous patience and understanding

Our sincere thanks to all respondents from different departments for clearing our doubts with tremendous patience and understanding.

The Following Officers /representative from Indona Innovative Solutions under the guidance of Shri Devinder Singh have carried out the energy on 15/05/2023.

Name	Role
Shri Devinder Singh	Team Leader
Shri Yogesh Kumar	Consultant
Shri Kamaljeet	Field Engineer

We do hope that management will find the recommendations given in this report useful in energy conservation as well as improvement in system performance. We have made every attempt to adhere to high quality standards, in both data collection and analysis. We would welcome any suggestions from your side as to how we can improve further.

INDONA INNOVATIVE SOLUTIONS Regd. off.: Railway Road Opp. Onkar Feed Store, Dina Nagar, Punjab -143531

Devinder Singh Certified Energy Auditor Indona Innovative Solutions

EXECUTIVE SUMMARY

Nehru Memorial Government College, Mansa awarded the Detailed Energy Audit study to Indona Innovative Solutions with a target to identify the energy reduction key areas and submission of report. The facility is getting grid supply from Punjab State Power Corporation Limited (PSPCL). The contract demand of the college is 112kVA. The campus has load variation due to occupancy and seasonal variation. The facility has consumed 55,548kVAh during one year (Apr- 22 to Mar- 23).

The intensive energy audit is conducted by the energy audit team of M/S Indona Innovative Solutions on 15/05/2023 to understand the energy consumption pattern and found there is huge energy saving potential. Based upon the site visit and performance assessment of utilities, recommendations are given to capture energy saving potential. The various measures have been given in below table based upon the sample payback period:

Sr.	Description	Energy	Annual	Investment,	Simple Payback
No.		saving, kWh	Saving, Rs.	Rs.	Period, months
1	Reduction in Contract Demand From 112kVA To 55kVA to reduce the fixed charges	0.0	59,384	Nil	Immediate
2	Installation of capacitor bank for maintaining power factor from average power factor of 0.959 close to 0.99 and reduction in energy consumption	9,324	59,952	45,000	9.0
3	Ensuring switching off the lights when there is no occupancy in the respective class room or office areas	2,728	18,089	16,200	10.7
4	Replacement of the conventional lights FTL- 12 with new (20W LED) energy efficient lights	4,640	29,835	45,000	18.1
5	Replacement of old ceiling fans with new 35W energy efficient BLDC fans	3,780	25,061	1,20,000	57.5
6	Installation of 45.0kWp capacity Grid connected Solar PV System for lighting load and other load	45,455	3,01,364	17,32,500	69.0

 Table 1: List of Energy Conservation Measures

Prepared by Indona Innovative Solutions

The energy saving from the installation of SPV is more than the energy saving from all the measurement. The installation of SPV will lead to huge energy saving and will cover the energy savings from all other measures. There are few other measures which can be implemented for energy saving and will improve energy accounting system:

- Installation of Energy Monitoring System for benchmarking and targeted energy reduction can help in further reduction in energy consumption.
- Maximize the use of natural light to reduce the energy consumption in artificial light.
- Keep AC unit set point close to 25°C.
- Always switch off the lights while going out of the classrooms.
- Use of float valve for water overheat tank so that the water energy saving can be achieved by avoiding overflow.

1. INTRODUCTION

1.1. INTRODUCTION ABOUT GOVT. RIPUDAMAN COLLEGE, NABHA

The foundation stone of the College building was laid by Late Comrade Ram Kishen, the then Chief Minister of Punjab, on 18th August 1965. Later in 1997, college was taken over by the Punjab Government and Late Sardar Beant Singh, the then Chief Minister of Punjab, who was largely instrumental in the Punjab Govt. taking over the College, graced the College with his presence at a function marking the inauguration of the College as Govt. College on 21st March, 1994. This institute has been catering the educational needs of the area is backed by liberal grants by the Punjab Government from time to time. Sardar Parkash Singh Badal, the then Chief Minister of Punjab, laid the foundation stone of the new (present) building on 7th August, 1997 Govt. The main building of the college is surrounded by beautiful shady trees. A vast majority of the students belong to the surrounding rural areas. The college has steadily grown, fulfilling its aims and goals. It offers various undergraduate, post graduate and PGDCA courses in Arts and commerce. The Arial view of the campus is as below:

Figure 1: Arial view of the Campus

1.2. CLIMATE CONDITION OF MANSA

The climate in the area is typical semi-arid type with distinct wet and dry seasons. The climate of Mansa district is classified as subtropical steppe, semi-arid and hot which is mainly dry except in rainy months and characterized by intensely hot summer and cold winter. The normal average annual rainfall of the district is 378.2 mm. The rainfall occurs due to southwest monsoon which sets in the last week of June and withdraws towards end of September. During three months of monsoon season from July to September the district experiences high humidity, cloudiness and good monsoon rainfall. The period from October to November Constitutes post monsoon season. The cold weather season prevails from December to February followed by hot weather season or Pre monsoon season which ends up to the last week of June.

Figure 2: Annual temperature profile of Mansa

The temperature profile contributes towards the trend of energy consumption. During extreme summer, the energy consumption increase as the running of AC units, fans etc. adds into the normal running load. While in winter the AC units and fans don't run so the energy consumption during winter will be lesser as compared to the summer.

1.3. MAJOR ENERGY USE AREAS

In Nehru Memorial Government College, Mansa Electricity is the only source of energy in the entire campus to run day to run operations. In annual energy bill, major contribution is due to Electrical Energy only. The connected load in the entire campus is 104.67kW. The detail of the connected load is as below:

Figure 3: Percentage share of different loads

Description	Percentage share, %	Connected Load, kW
AC units	31.26%	32.72
Lighting Load	22.56%	23.615
Fans	28.94%	30.29
Computers And Multi-Function Devices	12.32%	12.9
Miscellaneous	4.92%	5.15
Total		104.67

Table 2: Connected load in the campus

The percentage shown in figure above is based upon the connected load. To run the connected load, the college is getting 0.415kV supply from PSPCL. The major contribution is from fan 20.28% (20.72kW) however the running load of fan depends upon the weather condition and occupancy.

1.4. KEY INITIATIVE TAKEN BY COLLEGE TOWARDS ENERGY CONSERVATION

The college management knows its responsibility towards energy conservation and many initiatives taken as below:

- 1. Installation of LED Lights whenever there is replacement.
- 2. Use of star rated equipments.
- 3. Capacity building of the students through awareness sessions and various competitions on energy conservation so that the energy conservation habit is developed in the students.

Figure 4: Glimpse of Energy Conservation activities

2. ENERGY AUDIT APPROACH AND METHODOLOGY

2.1 APPROACH

A team of Energy Auditors was involved in carrying out the study, the general scope of which was as follows:

- Conduct energy performance evaluation of the various utilities.
- Conduct efficiency test of equipment and make recommendations for replacement (if required) by more efficient equipment with projected benefits
- Suggest improved operation & maintenance practices
- Provide details of investment for all the proposals for improvement.
- Evaluate benefits that accrue through investment and payback period
- Discuss with the respective personnel, the individual Energy Saving Projects (ESPs) for agreement for implementation.
- Analyze various energy conservation measures and to prioritize based on the maximum energy saving & investment i.e. short, medium and long term.

Prioritization	Payback Period
Short Term Project	Less than 1 year
Medium Term Project	Between 1 and 3 years
Long Term Project	More than 3 years

Table 3: Type of Project Category and PBP

2.2 MEHODOLOGY

The general methodology followed is captured in the following figure:

Figure 5: Methodology for Energy Audit

2.3 INSTRUMENTS USED FOR ENERGY AUDIT

The following portable instruments were used for data measurement:

- 3 phase Power Analyzer
- Single phase Power Analyzer
- Ultrasonic Water Flow Meter
- Anemometer
- Hygrometer
- Digital Thermometer
- Infrared Thermometer
- Pressure gauge
- Lux Meter

3. ELECTRICAL SYSTM AND BILL ANALYSIS

3.1. ELECTRICAL SYSTEM

This facility is receiving 0.415kV power supply from Punjab State Power Corporation Limited (PSPCL). The direct power supply is coming at main LT panel installed in the Electrical Room. There is one DG Set also to cater the energy supply during power failure in exam. The change over switch is provided in the LT panel to switch over the power supply based upon the requirement.

Figure 6: LT Panel Installed in NMC, Mansa

There are few observations and recommendation based upon the observation which can help in reduction in energy loss and improved reliability.

- 1. It is recommended to provide the insulation mat to safeguard the manpower during operations/maintenance.
- 2. There should be no cable joints or unwanted cables on the floor. This leads to energy loss and can also lead to unsafe working condition.
- 3. Electrical room should be identified with proper marking and danger signage.
- 4. There should be fire extinguisher in the electrical panel room to stop fire to propagate.
- 5. The electrical room should be free from any type of unwanted material.

3.2. ELECTRICITY BILL ANALYSIS

Nehru Memorial Government College, Mansa is getting electricity supply from PSPCL having account number 3002309341. As per tariff order, facility falls under "DS rate category for DS>100kW DPC type. The sanctioned load for the campus is 101.2kW and contract demand is 112.4kVA. This facility is billed on two-part tariff structure. One part for capacity or demand drawn basis i.e. fixed Charges and the second part for actual energy drawn during the billing cycle. Fixed Charges are calculated based upon the MDI. Actual Energy Consumption is calculated based upon the Meter reading. The following components are the part of tariff structure as per latest tariff order:

Sr. No.	Components	Description	Charges
1	Fixed Demand Charges	Charges for Fixed/Maximum	Rs.125/ kVA
		demand registered during the	
		month/billing period	
2	Energy Charges	Billed on drawn kWh units.	Rs. 6.63/kVAh
3	Total Rent with Tax		Rs. 1491.52/month
4	Total Surcharge		Variable
5	Total Rebates		Variable
6	Subsidy		Not Applicable
7	Electricity Duty		12.7% of Energy and
			fixed charges

Table 4: Energy Bill Components

Month MDI, kVA Billable Demand, kVA kWh Pomer kVAh Factor Power Charges, Rs Fixed Charges, Rs Bill Amount, Rs, RS Apr-22 26.74 89.96 5,581 6,845 0.82 45,382 12,199 2,52,580 May-22 27.86 89.96 5,397 6,094 0.89 40,403 11,090 2,18,090 Jun-22 21.56 89.96 3,023 3,376 0.90 22,383 8,133 2,76,790 Jul-22 28.65 89.96 5,393 6,099 0.88 40,436 11,090 1,30,800 Aug-22 33.54 89.96 7,089 7,978 0.89 52,894 11,830 2,12,340 Oct-22 21.49 89.96 2,310 2,901 0.80 19,234 7,763 2,67,020 Nov-22 13.88 89.96 2,620 3,458 0.76 22,927 11,090 41,460 Jan-23 14.17 89.96 2,616 3,395 0.74 22,									
Apr-2226.7489.965,5816,8450.8245,38212,1992,52,580May-2227.8689.965,3976,0940.8940,40311,0902,18,090Jun-2221.5689.963,0233,3760.9022,3838,1332,76,790Jul-2228.6589.965,2355,8540.8938,81211,09065,910Aug-2233.5489.965,3936,0990.8840,43611,0901,30,800Sep-2239.2889.967,0897,9780.8952,89411,8302,12,340Oct-2221.4989.962,3102,9010.8019,2347,7632,67,020Nov-2213.8889.962,3663,5710.6623,67611,83044,700Dec-2211.1089.962,2143,0020.7419,90311,09037,080Jan-2314.1789.962,5163,3950.7422,50911,83041,850Mar-2313.4389.962,0182,9750.6819,7246,34936,830Mar-2313.4389.967,0897,9780.89552,89412,199Maximum39.2889.967,0897,9780.89552,89412,199Average22.2389.967,0897,9780.80530,69010,449	Month	MDI, kVA		kWh	kVAh				
May-2227.8689.965,3976,0940.8940,40311,0902,18,090Jun-2221.5689.963,0233,3760.9022,3838,1332,76,790Jul-2228.6589.965,2355,8540.8938,81211,09065,910Aug-2233.5489.965,3936,0990.8840,43611,0901,30,800Sep-2239.2889.967,0897,9780.8952,89411,8302,12,340Oct-2221.4989.962,3102,9010.8019,2347,7632,67,020Nov-2213.8889.962,3663,5710.6623,67611,83044,700Dec-2211.1089.962,2143,0020.7419,90311,09037,080Jan-2314.1789.962,6203,4580.7622,92711,09041,460Feb-2315.0889.962,5163,3950.7422,50911,83041,850Mar-2313.4389.962,0182,9750.6819,7246,34936,830Mar-2313.4389.967,0897,9780.89552,89412,199Maximum39.2889.967,0897,9780.89552,89412,199Average22.2389.963,8144,6290.80330,69010,449			Demand, kVA			Factor	Charges, Rs	Charges, Rs	Rs, RS
Jun-2221.5689.963,0233,3760.9022,3838,1332,76,790Jul-2228.6589.965,2355,8540.8938,81211,09065,910Aug-2233.5489.965,3936,0990.8840,43611,0901,30,800Sep-2239.2889.967,0897,9780.8952,89411,8302,12,340Oct-2221.4989.962,3102,9010.8019,2347,7632,67,020Nov-2213.8889.962,3663,5710.6623,67611,83044,700Dec-2211.1089.962,2143,0020.7419,90311,09037,080Jan-2314.1789.962,6203,4580.7622,92711,09041,460Feb-2315.0889.962,5163,3950.7422,50911,83041,850Mar-2313.4389.962,0182,9750.6819,7246,34936,830Mar-2313.4389.967,0897,9780.89552,89412,199Average22.2389.967,0897,9780.80552,89412,199	Apr-22	26.74	89.96	5,581	6,845	0.82	45,382	12,199	2,52,580
Jul-2228.6589.965,2355,8540.8938,81211,09065,910Aug-2233.5489.965,3936,0990.8840,43611,0901,30,800Sep-2239.2889.967,0897,9780.8952,89411,8302,12,340Oct-2221.4989.962,3102,9010.8019,2347,7632,67,020Nov-2213.8889.962,3663,5710.6623,67611,83044,700Dec-2211.1089.962,2143,0020.7419,90311,09037,080Jan-2314.1789.962,6203,4580.7622,92711,09041,460Feb-2315.0889.962,5163,3950.7422,50911,83041,850Mar-2313.4389.962,0182,9750.6819,7246,34936,830Total45,76255,5489.6373,68,2831,25,384Maximum39.2889.967,0897,9780.89552,89412,199Average22.2389.963,8144,6290.80330,69010,449	May-22	27.86	89.96	5,397	6,094	0.89	40,403	11,090	2,18,090
Aug-2233.5489.965,3936,0990.8840,43611,0901,30,800Sep-2239.2889.967,0897,9780.8952,89411,8302,12,340Oct-2221.4989.962,3102,9010.8019,2347,7632,67,020Nov-2213.8889.962,3663,5710.6623,67611,83044,700Dec-2211.1089.962,2143,0020.7419,90311,09037,080Jan-2314.1789.962,6203,4580.7622,92711,09041,460Feb-2315.0889.962,5163,3950.7422,50911,83041,850Mar-2313.4389.962,0182,9750.6819,7246,34936,830Total	Jun-22	21.56	89.96	3,023	3,376	0.90	22,383	8,133	2,76,790
Sep-2239.2889.967,0897,9780.8952,89411,8302,12,340Oct-2221.4989.962,3102,9010.8019,2347,7632,67,020Nov-2213.8889.962,3663,5710.6623,67611,83044,700Dec-2211.1089.962,2143,0020.7419,90311,09037,080Jan-2314.1789.962,6203,4580.7622,92711,09041,460Feb-2315.0889.962,5163,3950.7422,50911,83041,850Mar-2313.4389.962,0182,9750.6819,7246,34936,830Total	Jul-22	28.65	89.96	5,235	5,854	0.89	38,812	11,090	65,910
Oct-2221.4989.962,3102,9010.8019,2347,7632,67,020Nov-2213.8889.962,3663,5710.6623,67611,83044,700Dec-2211.1089.962,2143,0020.7419,90311,09037,080Jan-2314.1789.962,6203,4580.7622,92711,09041,460Feb-2315.0889.962,5163,3950.7422,50911,83041,850Mar-2313.4389.962,0182,9750.6819,7246,34936,830Total	Aug-22	33.54	89.96	5,393	6,099	0.88	40,436	11,090	1,30,800
Nov-2213.8889.962,3663,5710.6623,67611,83044,700Dec-2211.1089.962,2143,0020.7419,90311,09037,080Jan-2314.1789.962,6203,4580.7622,92711,09041,460Feb-2315.0889.962,5163,3950.7422,50911,83041,850Mar-2313.4389.962,0182,9750.6819,7246,34936,830Total	Sep-22	39.28	89.96	7,089	7,978	0.89	52,894	11,830	2,12,340
Dec-2211.1089.962,2143,0020.7419,90311,09037,080Jan-2314.1789.962,6203,4580.7622,92711,09041,460Feb-2315.0889.962,5163,3950.7422,50911,83041,850Mar-2313.4389.962,0182,9750.6819,7246,34936,830Total45,76255,5489.6373,68,2831,25,384Maximum39.2889.967,0897,9780.89552,89412,199Average22.2389.963,8144,6290.80330,69010,449	Oct-22	21.49	89.96	2,310	2,901	0.80	19,234	7,763	2,67,020
Jan-2314.1789.962,6203,4580.7622,92711,09041,460Feb-2315.0889.962,5163,3950.7422,50911,83041,850Mar-2313.4389.962,0182,9750.6819,7246,34936,830Total	Nov-22	13.88	89.96	2,366	3,571	0.66	23,676	11,830	44,700
Feb-2315.0889.962,5163,3950.7422,50911,83041,850Mar-2313.4389.962,0182,9750.6819,7246,34936,830Total45,76255,5489.6373,68,2831,25,384Maximum39.2889.967,0897,9780.89552,89412,199Average22.2389.963,8144,6290.80330,69010,449	Dec-22	11.10	89.96	2,214	3,002	0.74	19,903	11,090	37,080
Mar-23 13.43 89.96 2,018 2,975 0.68 19,724 6,349 36,830 Total 45,762 55,548 9.637 3,68,283 1,25,384 Maximum 39.28 89.96 7,089 7,978 0.895 52,894 12,199 Average 22.23 89.96 3,814 4,629 0.803 30,690 10,449	Jan-23	14.17	89.96	2,620	3,458	0.76	22,927	11,090	41,460
Total45,76255,5489.6373,68,2831,25,384Maximum39.2889.967,0897,9780.89552,89412,199Average22.2389.963,8144,6290.80330,69010,449	Feb-23	15.08	89.96	2,516	3,395	0.74	22,509	11,830	41,850
Maximum39.2889.967,0897,9780.89552,89412,199Average22.2389.963,8144,6290.80330,69010,449	Mar-23	13.43	89.96	2,018	2,975	0.68	19,724	6,349	36,830
Average 22.23 89.96 3,814 4,629 0.803 30,690 10,449	Total			45,762	55,548	9.637	3,68,283	1,25,384	
• • • • • •	Maximum	39.28	89.96	7,089	7,978	0.895	52,894	12,199	
Minimum 11.10 89.96 2,018 2,901 0.663 19,234 6,349	Average	22.23	89.96	3,814	4,629	0.803	30,690	10,449	
	Minimum	11.10	89.96	2,018	2,901	0.663	19,234	6,349	

The electricity bill analysis is done for one year and various values for billing are as below:

Table 5: Major Components of Electricity Bill

The major outcomes of the bill analysis are as below:

- Total Annual Energy consumption for this facility from grid is 55,548kVAh (45,762) kWh and the energy charges are Rs 3.68Lakh.
- The maximum energy consumption (7,978kVAh) is observed during September- 2022 and minimum during October- 2022 (2,901kWh). Annual average Electricity consumption on monthly basis is 3,814kVAh.
- The reason for the variation in the electricity energy consumption is climate condition in the region and occupancy.
- The bill amount is very high compared to the energy consumption in few months because the bill was not paid in the previous months. Due to non-payment of the bills during payment period, penalty is imposed in the next month bills.

3.3.1 MAXIMUM DEMAND PATTERN

The contract demand for facility is 112kVA and minimum billable demand is 80% (89.96kVA) of the contract demand as per tariff order till March 2023.Maximum Demand Indicator (MDI) is another component mentioned in the electricity bill. MDI is maximum demand value in one month during one particular time reached during the billing period (this average time may vary depending on the country/DISCOM). The monthly MDI should not exceed the contract demand; otherwise customer will pay a penalty on the electricity bill as defined in Tariff Order. The month wise MDI is as below:

Figure 7: Month wise Maximum recorded demand

As per electricity bill, MDI is varying from 11.10kVA to 39.28kVA in one year which means MDI in one year Electricity bill has not even exceeded the minimum billable demand (89.96kVA) at which campus is charged as fixed charges.

3.3.2 ENERGY CONSUMPTION PATTERN

There is huge variation in energy consumption in one year. Month wise energy consumption is as below:

Figure 8: Month wise Energy Consumption kWh and kVAh

The billing for this Institute is in Rs/kVAh and the analysis of energy consumption in both kWh and kVAh is important. The difference in energy consumption in kWh and kVAh is due to the power factor variation. For unity power factor, kWh and kVAh will be equal while if power factor is poor, higher difference in kWh and kVAh values are observed. The maximum energy consumption (7,978kVAh) is observed during September- 2022 and minimum during October-2022 (2,901kWh). Annual average Electricity consumption on monthly basis is 3,814kVAh.

3.3.3 POWER FACTOR PATTERN

The month wise power Factor Graph as per energy bill is as below:

Figure 9: Month wise Power Factor

The major observations from the Power factor graph are as below:

- 1. The power factor in the facility is very low. It is varying from 0.66 to 0.90. On comparing energy consumption with power factor, it is observed that when energy consumption is low, power factor is also low.
- 2. The lower power factor lead to higher reactive energy demand from the system and thus it leads to the higher apparent power.

4. Performance Assessment of Utilities

4.1 MAIN INCOMER SUPPLY

There is huge load variation based upon the occupancy in the class room, different office areas, library and running of pumps. Three phase power analyzer has been used for recording of parameters at main incomer. The location of Power Analyzer is as below:

Figure 10: Position of Power Analyzer

Based upon the recorded parameters and physical inspection of the entire electrical distribution system

- 1. Quality of electrical distribution system
- 2. Power quality

4.2 QUALITY OF ELECTRICAL DISTRIBUTIONS SYSTEM

The visual inspection of electrical installation in the premises including Electrical room, Low tension switch gear panel, Distribution boards, lighting installations, earthing arrangements. During visual inspection all the observations, which are either dangerous or non compatible to the standard engineering practice are noted and potential corrective actions are made to the safety level of the electrical installation. The detailed testing and inspection results are tabulated as below:

Observations

- Poor management of wires/cable and no mechanically protection provided.
- Lugs and glands are not found.
- Dressing/ terminations of wires not done properly.
- Conditions of cabling carried out in the Premises are very poor and at many place, cable joints are found.
- The number of cable with joints are lying on floor in Electrical Panel Room

Recommendations

- Use lugs and glands at end terminations to protect ingress of water, vermin and dust.
- New Fuse units should be provided.
- All final circuits should be provided with individual overload and short- circuit protection.
- Cables/wires should have mechanical protection (means always to run inside the pipes) and should be adequately supported throughout their run.
- Avoid lose wires and joints in the wiring system.

4.3 POWER QUALITY

Power quality determines the fitness of electrical power to consumer devices. There are many ways in which electric power can be of poor quality such as voltage unbalance, harmonics etc. **Fluke make Power Analyzer** is used to check power quality of the system. Under Power Quality, the various parameters measured and calculated are as below:

- 1. Load Variation
- 2. Voltage Unbalance
- 3. Power factor variation
- 4. Harmonics level

The power analyzer is put at main incomers at LT panel to record data. Based upon the recorded parameters are described as below:

4.2.1 LOAD VARIATION

Since this is not a fully 24x7 operational facility so load behavior is different and depends upon the occupancy and weather condition. The activities which are performed continuously lead to continuously contribution towards energy consumption. The load trend on main incomers is as below:

Figure 11: Trend of Load variation at main incomer

From trend it is clear the maximum power is 17.5kVA (15.6kW) observed during data logging. It is the running power at normal operating hours. The jerk in the load trends are corresponding to switch on/off of the additional loads. The college was running at partial load due to which measured maximum load is less than the maximum demand.

4.2.2 VOLTAGE UNBALANCE

Voltage unbalance occurs when the RMS line voltages on a poly-phase system are unequal. Voltages are seldom perfectly balanced between phases, but when this unbalance becomes excessive, it can create problems for poly-phase motors. Many of the newer induction motors are now more sensitive to unbalance than the older designs, and furthermore, adjustable speed drives can be even more vulnerable than standard motors. According to ANSI (American National standards Institute) codes voltage unbalance should be within 1%.

The main effect of voltage unbalance is motor damage from excessive heat. Voltage unbalance can create a current unbalance 6 to 10 times the magnitude of voltage unbalance. Consequently, this current unbalance creates heat in the motor windings that breaks down motor insulation causing cumulative and permanent damage to the motor. The relationship is exponential, and approximately increases by twice the square of the percent of voltage unbalance. Figure below, shows the percentage of temperature rise as related to the voltage unbalance:

Figure 12: Relation between Voltage Unbalance and Temperature rise

There is huge load variation and also there is load shifting based upon requirement and there were chances of voltage unbalance. To verify the trend of voltage unbalance, data for voltage unbalance is recorded and trend is also attached.

Figure 13: Trend of Voltage Unbalance at main incomer

It is clear that maximum recorded voltage unbalance 0.58% is within limit of 1%. This indicates that the electrical load is equally distributed.

4.2.3 CURRENT UNBALANCE

For a three-phase supply, current unbalance is defined as the maximum deviation of any current phase from the average current, divided by the average current, often expressed as a percentage. A current unbalance will generate excess heat which can melt insulation, leading to stator winding faults. Unbalance will also result in an uneven torque being produced by the electric motor, reducing its efficiency and increasing vibration. The trend of current unbalance at running load is as below:

Figure 14: Trend of the current unbalance

In entire campus, single phase load is installed. The running load depends upon the occupancy and weather condition. The unequal distribution of loads between the three phases and thus the unbalance is observed. The current unbalance of the system can lead to unbalanced voltage drops on the electric lines. This increases neutral current which cause line and thus energy losses. To mitigate this problem, proper load distribution is recommended at full load condition.

4.2.4 POWER FACTOR VARIATION

The power factor is also recorded at running load and trend of power factor variation at main incomer is as below:

Figure 15: Power factor measurement at main incomer

The maximum power factor 0.92 is observed at running load while during jerk load, power factor comes down up to 0.63.

4.2.5 HARMONICS LEVEL

Harmonics are currents or voltages with frequencies that are integer multiples of the fundamental power frequency. Ideally, voltage and current waveforms are perfect sinusoids. However, due to the increased popularity of electronic and other non-linear loads, these waveforms get distorted. This deviation from a perfect sine wave can be represented by harmonics—sinusoidal components having a frequency that is an integral multiple of the fundamental frequency. Thus, a pure voltage or current sine wave has no distortion and no harmonics, and a non-sinusoidal wave has distortion and harmonics. To quantify the distortion, the term total harmonic distortion (THD) is used. The term expresses the distortion as a percentage of the fundamental (pure sine) of voltage and current waveforms.

Figure 16: Harmonic distortion of the Waveform

When harmonic frequencies are prevalent, electrical power panels and transformers become mechanically resonant to the magnetic fields generated by higher frequency harmonics. When this happens, the power panel or transformer vibrates and emits a buzzing sound for the different harmonic frequencies. Harmonic frequencies from the 3rd to the 25th are the most common range of frequencies measured in electrical distribution systems.

Harmonics provides a mathematical analysis of distortions to a current or voltage waveform. Based on Fourier series, harmonics can describe any periodic wave as a summation of simple sinusoidal waves which are integer multiples of the fundamental frequency. These are steadystate distortions to current and voltage waves and repeat every cycle. They are different from transient distortions to power systems such as spikes, dips and impulses.THD is a common measurement of the level of harmonic distortion present in power systems. THD can be related to either current harmonics or voltage harmonics, and it is defined as the ratio of total harmonics to the value at fundamental frequency times 100%. Harmonics are created from equipment's containing electronics that control other apparatus, e.g. variable speed drives, soft starters, static compensators, rectifiers and heating furnaces, etc. The harmonic analysis is carried out based upon the data recorded in power analyzer and it is observed that and Current THD% is not within the permissible limits as per IEEE-519, 1992 of main incomer is highlighted in below table.

Description			Main incomer
Measured % of THD at maximum demand load	Ľ,	R	1.65
(Fundamental) current		Y	1.47
(I _L)		В	1.44
		R	3.93
		Y	3.91
		В	3.89

Table 6: THD parameters measured at main incomer

Both the current and the voltage harmonics distortion is within the limit of 3%, indicates that there is no problems of the harmonics.

4.3 DIESEL GENEARTING SETS

There are few general recommendations for DG Set as below:

- 1. The maximum permissible percentage unbalance in phase loads on DG sets is 10%.
- 2. Lower power factor of a DG set demands higher excitation currents.
- 3. Calibrate fuel injection pumps frequently and Improve air filtration.
- 4. Consider fuel oil additives in case they benefit fuel oil properties for DG set usage.
- 5. Ensure fuel oil storage, handling and preparation as per manufacturers.
- 6. Ensure compliance with maintenance checklist.
- 7. In case of a base load operation, consider waste heat recovery system adoption for steam.

The loading of DG Sets can be improved with automation in which all DG Sets can be connected with PLC system and the DG Sets will start based upon the loading of Master DG set. The monitoring if generation and fuel consumption of DG Set on regular basis also helps in taking corrective measure on time for improvement in DG Set Performance. The sample data sheet which can be used for DG Set Performance on monthly basis is as below:

Description	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Generation, kWh												
Fuel Consumption in												
Generation, lit												
SFC, lit/kWh												
Generation, kWh/lit												

Figure 17: Sample Performance Assessment Sheet for DG Set

4.4 AC UNITS

There are 22 number of AC units installed in the campus and the connected load is around 32.72kW however the running load is only 9.22kW. The running load was also instantaneous only because these areas were not occupied. The computer lab new is not in operation so the AC load is not contributing towards the running load. The connected load of AC units is as below:

Area	Туре	Number	Connected Load, kW	Running Load, kW
Principal Room	AC Split	2	2.90	2.175
Finishing School Lab- 1	AC Split	2	3.00	2.25
Finish Lab- 2	AC Split	2	3.00	
Punjabi Language	AC Split	2	3.10	2.32
Computer Lab New	AC Split	7	10.15	
Computer Science Lab- 1	AC Window	3	4.65	1.12
Computer Science Lab- 2 & 3	AC Window	4	5.92	1.35
Total		22	32.72	9.22

Table 7: Connected load of AC units

The measured maximum power of the AC unit is less than rated power. The AC units are switching on/off based upon the temperature setting. There are few tips to Use Air Conditioner Effectively all around the season:

- Check and Change the Air Filter.
- Use Smart Thermostat or AC Controllers.
- Don't Let Your Thermostat Take the Heat.
- Try to fix the AC unit in air sealed room to the extent possible.
- Avoid Steep Temperature Changes and try to run AC unit at 25°C

4.5 LIGHTING

The total connected lighting load in the entire campus is around 23.615kW. Total lighting load is sum of connected rated power of each luminary. The Mix different types of LED fittings, CFL, T- 8, FTL- 12, T- 5 etc. are installed in the campus. The details of the connected load are as below:

Figure 18: Percentage share of different lighting

Type of Lights	Number of lights	Connected Load, kW
FTL- 12, 40W	146	7.884
FTL- 12, 20W	16	0.48
FTL- 8, 36W	192	8.448
T- 5, 28W	61	2.013
LED Light, 20W	171	3.42
CFL, 36W	10	0.36
CFL, 20W	48	0.96
CFL, 5W	10	0.05
Total	654	23.615

Table 8: Connected Lighting Load

Most interior lighting requirements are for meeting average luminance on a horizontal plane, either throughout the interior, or in specific areas within the interior combined with general lighting of lower value. For assessing energy efficiency of lighting system, Inventory of the Lighting System is noted and the lux levels measurement at working level has been done with help of lux meter. The various values of lux levels based upon measurements are as below:

Energy Audit Report 2023

Area	Maximum Lux	Average Lux	Minimum Lux	Remarks
Admin Block	278	200	145	
Principal Room	479	299	158	Natural light Available
Finishing School Lab- 1	175	151	124	
Photocopy Room	112	103	86	
Physical Room	117	91	63	
Bursar Room	128	114	105	
Gym	87	79	69	Additional Light is required
English Department	164	148	132	
Punjabi	175	154	133	
Commerce	94	86	73	Additional Light is required
Political Science	132	124	114	· · ·
Storage Room	85	75	62	Additional Light is required
Corridor	111	99	87	
Economics	221	208	197	
Library	278	238	212	
Store Library	112	105	96	
Corridor	123	116	110	
Computer Science Lab- 1	130	98	68	Additional Light is required
Computer Science Lab- 2&3	125	113	98	Additional Light is required
1st Floor Room- 1	150	117	83	
EDUSAT	129	108	74	Additional Light is required
1st Floor Room- 4	268	234	210	
1st Floor Room- 5	210	171	143	
Room - 09	165	135	111	
Finish Lab- 2	198	169	140	
Chemistry Lab- 1	179	152	121	
Chemistry Lab- 2	210	185	154	
Punjabi Language	240	187	141	
Auditorium	201	168	144	
Girls Common Room	170	152	136	
Canteen	232	203	167	

Area	Maximum Lux	Average Lux	Minimum Lux	Remarks
Theatre- 1	219	187	160	
Theatre- 2	176	141	102	
Theatre - 3	181	143	120	
Theatre - 4	193	156	126	
Room - 01	154	140	130	
Room- 02	180	145	114	
Room - 03	191	168	145	
Room - 04	201	160	114	
Room- 05	162	145	119	
Room - 07	128	117	108	
Room - 08	160	147	130	
Room - 09	214	163	126	
Room - 10	210	168	125	
Room - 11	194	159	124	
Room- 12	143	135	127	
Room - 13	154	138	129	
Room - 14	133	126	120	
Room- 15	162	152	145	
Room - 16	164	157	145	
PTU Block	265	233	210	
Computer Lab New	208	182	159	

Table 9: Measured Lux level

The major observations based upon the lux level measurement are as below:

- The number of lights in most of the areas is sufficient but the output from the luminaries is low due to which lux level is low.
- The Lux level in computer labs is very low due to non-functional fittings.
- At many rooms, additional lights need to be installed to improve the lux level.
- Many lights were not working due to which the lux level is low.

4.6 FANS

The ceiling fans are more affordable than air conditioners and the right size can make a difference. The summers are very hot in the region so the energy consumption by the fans adds into the energy consumption in summer. Apart from ceiling fans, exhaust fans and wall fans are installed to maintain the required ambient temperature. The connected load of the fans is 30.29 and is tabulated as below:

Description	Number	Average Rated Power, W	Connected Load, kW
Ceiling Fans	372	70	26.04
Wall Fans, 50W	6	50	0.3
Wall Fans, 250W	11	250	2.75
Exhaust	8	150	1.2
Total	397		30.29

Table 10: Connected Fan Load

4.7 COMPUTERS AND MULTI-FUNCTION DEVICES

These devices are installed in the staff room, labs and the office areas for the supporting and main stream activities. The connected load of these devices is around 12.9kW.

Description	Number	Connected load, kW
Computers	42	6.3
Printer	8	5.2
Projector	2	0.8
Scanner	3	0.6
Total	67	12.9

Table 11: Details of water cooler

4.8 MISCALANEOUS LOAD

These devices are installed in the staff room, labs and the office areas for the supporting and main stream activities. The connected load of miscellaneous load is 5.4kW.

Description	Number	Connected Load, kW
Refrigerator	2	0.7
Air Cooler	1	0.35
Induction Plate	2	1.0
Hot Kettle	1	0.35
Heater	2	2.0
Pump	1	0.75
Total	8	5.15

Table 12: Details of miscellaneous load

5. ENERGY EFFICIENCY MEASURES

5.1 REDCUCTION IN CONTRACT DEMAND FROM 112KVA TO 55KVA TO REDUCE THE FIXED CHARGES

Observations

From annual electricity bill, it is clear that maximum demand recorded in one year is 39.2kVA which is only 35% of the contract demand while the least is only 10% of the contract demand. The unit is being charged for 80% of the contract demand.

Recommendation

It is recommended to reduce the contract demand from 112.0kVA to 55kVA. The recommended demand is almost 40% higher than the maximum recorded demand.

Figure 19: Reduction in contract demand

The installation of the APFC and the installation of the energy efficient appliance will give additional margin to the demand. The reduction in demand will lead to direct reduction in the energy bill. The calculated saving in energy bill is as below:
Description	UoM	Values
Contract Demand as per latest Bill	kVA	112
Minimum Billable demand at present scenario	kVA	89.96
Recommended Contract Demand	kVA	55
Annual billed fixed charges at present contract demand	Rs.	1,25,384
Annual billed fixed charges at recommended contract	Rs.	66,000
demand		
Annual monetary saving	Rs.	59,384
Investment	Rs.	Nil
Payback period	months	Immediate

5.2 IMPROVEMENT IN ANNUAL AVERAGE POWER FACTOR FROM 0.80 TO 0.99 BY INSTALLING 40KVAR APFC AT MAIN INCOMER

Observation

The annual average power factor as per electricity bill is 0.80 while the power factor varies from 0.66 to 0.89. There is indirect penalty if power factor is less than unity as billing is in Rs/kVAh. At present there is no provision for improvement in power factor for the facility.

Recommendation

The recommended to install 40kVA APFC to maintain power factor for the facility close to unity. The trend of running and recommended power factor is as below:

Figure 20: Improvement in Power Factor

APFC is an automatic power factor control panel which is used to improve the power factor, whenever required, by switching ON and OFF the required capacitor bank units automatically. It becomes very much important to reduce on electrical consumption for reducing expenditure and economizing the utility expenses by harnessing electrical utility by operation at desired power factor to curtail unwanted electricity penalty rising because of power factor drop. It also helps us to keep reactive power consumption low from the system and thus keeping MDI low. The calculated saving from implementation of measures is as below:

Description	UoM	Values
Annual Average Power Factor		0.803
Recommended Power Factor		0.99
Annual billed energy consumption at present Power Factor	kVAh	55,548
Annual energy consumption	kWh	45,762
Annual billed energy consumption at improved Power Factor	kVAh	46,224
Annual Energy saving at improved power factor	kVAh	9,324
Annual monetary saving	Rs.	59,952
Investment (inspection and installation of 40kVAr APFC)	Rs.	45,000
Payback period	months	9.0

5.3 ENSURING SWITCHING OFF THE LIGHTS WHEN THERE IS NO OCCUPANCY IN THE RESPECTIVE CLASS ROOM OR OFFICE AREAS

Observations

During lux level measurement, it was observed that many rooms were locked but the ceiling fans and lights were running in the area. During college closing time, the running load was around 11.0kW which indicates that load was running considering minimum 50% (5.5kW) necessary running load, 50% load was which can be switched off.

Recommendation

The lighting controls such as motion detectors or timers and dimmers can help reduce your energy consumption by automatically controlling your lights efficiently. The turning off the lights when leaving the classrooms/office is a cost-effective way to reduce wasted energy. It can be achieved by capacity building of the students through training, awareness on energy conservation through different competitions and lectures and giving them the role of energy warriors to ensure that no lights/fans etc. is running when room are empty. This can lead to energy saving of 50- 60 units on daily basis. The saving calculations are as below:

Description	Units	Value
Running load considered for the measures	kW	3.6
Load which is non-essential and can be switched off automatically	kW	1.4
Annual operating days		300
Operating hours	hours	6
Annual energy saving after capturing non-essential load	kVAh	2,728
Annual monetary saving	Rs.	18,089
Investment	Rs.	16,200
Payback period	months	10.7

5.4 REPLACEMENT OF THE CONVENTIONAL LIGHTS (FTL- 12 AND T- 8) WITH NEW (20W LED) ENERGY EFFICIENT LIGHTS

Observations

The FTL and T-8 fittings are considered for the replacement. The connected load of these lights is around connected load of the conventional lights is around 16.8kW (354nos).

Recommendation

It is recommended to replace the conventional lights with LED lights. Both types of fittings can be replaced with 20W LED lights. LED lighting is far more energy efficient; it will reduce electricity consumption and lower utility bill. Since all the lights are not working condition, only 100no of lights which are installed in commonly used areas are considered for replacement. The saving calculations are as below:

Description	Units	Value
Approximate Connected of lights considered for replacement	kW	5.4
Number of lights considered for replacement		100
Rated power of the LED lights considered for replacement	W	20
Annual energy consumption at present scenario	kWh	7,776
Annual energy consumption after implementation of measure	kWh	3,600
Annual energy saving	kVAh	4,640
Annual monetary saving	Rs.	29,835
Investment@ Rs 450/fitting	Rs.	45,000
Payback period	months	18.1

Based upon the results, the rest of FTL- 12, 8 and T-5 can also be replaced with energy efficient LED lights.

5.5 REPLACEMENT OF 50 NUMBER OF OLD CEILING FANS WITH NEW 35W ENERGY EFFICIENT BLDC FANS

Observations

The connected load of the 50 old ceiling fans is around 3.5kW. These fans are very old, heavy and consume huge energy.

Recommendation

BLDC motor is used in the BLDC ceiling fan as compared to induction motor in normal ceiling fan. The lifespan of these fans is more than a normal ceiling fan because there is no heat generated in BLDC Motor hence its increases lifespan of ceiling fan bearings. There are fewer chances for the winding failure due to the use of high thickness copper wire in the winding. BLDC fan can save 60% electricity in the ceiling fan. The saving calculations are as below:

Description	Units	Value
Approximate Connected considered for replacement	kW	3.5
Number of fans to be replaced		50
Rated power of the new fans	W	35
Annual energy consumption at present scenario	kWh	6,930
Annual energy consumption after implementation of measure	kWh	3,150
Annual energy saving	kWh	3,780
Annual monetary saving	Rs Lakh	25,061
Investment@ Rs 2400/fan	Rs Lakh	1,20,000
Payback period	months	57

5.6 INSTALLATION OF 45.0KWP CAPACITY GRID CONNECTED SOLAR PV SYSTEM FOR LIGHTING LOAD AND OTHER LOAD

Observation

The contract demand for the college campus as per electricity bill is 112kVA. This region of Punjab has immense potential for quality solar irradiation, harnessing of this resource can be best suited to meet the energy requirements. Punjab is endowed with vast potential of solar energy with over 300 days of sunshine in a year. The data source derived from website of Punjab Energy Development Agency and from a PVGIS satellite station indicates that insolation level varying between 4- 7 kWh/m². There is enough space on roof top in facility where SPV can be installed. The SDA in this region has notification for promoting Renewable energy sources.

Recommendation

It is recommended to put Grid connected Solar PV System. The recommended rated power for the SPV system is 45.0kWp. In Grid connected Solar Rooftop PV system the DC power generated from SPV panel is converted to AC power using power conditioning unit. Generated Power by this system during the day time is utilized fully for powering captive loads and excess power is fed to the Grid. Grid connected Solar Rooftop system is operational so long as grid is available. In case, where solar power is not sufficient due to cloud cover etc., the captive loads are served by drawing power from the grid. The Advantages of Grid-Connected Rooftop Solar System is as below:

- 1. Electricity generation at the consumption point therefore Savings in transmission and distribution losses.
- 2. Low gestation time.
- 3. No requirement of additional land.
- 4. Improvement of tail-end grid voltages and reduction in system congestion with higher selfconsumption of solar electricity.
- 5. Local employment generation.

The facility can also plan for system with battery back-up to shift lighting load from main power supply to solar power during day time. It will be a Hybrid system in which the battery bank could be charged both from Main, DG Set and SPV. The diagram for Hybrid System is as below:

Figure 21: Grid Connected Hybrid SPV System

The saving calculation is done based upon grid connected system and cost is taken as per MNRE website. The detailed calculations are as below:

Description	Units	Value
Sanctioned load of Unit	kVA	112
Recommended capacity of SPV considering load reduction	kWp	45
Expected annual generation from SPV	kWh	45,000
Annual energy consumption at present scenario	kWh	45,762
Annual energy consumption after installation of SPV based upon energy bill	kWh	762
Annual energy saving based upon the present energy consumption scenario	kVAh	45,455
Annual monetary saving	Rs.	3,01,364
Investment @Rs. 38,500/kWp	Rs.	17,32,500
Payback period	months	69

5.7 INSTALLATION OF ENERGY MONITORING SYSTEM

Observation

In present scenario month wise energy bill is monitored however the season wise, section wise, power outage, in-house power generation is not monitored. The facility has one PSPCL energy meter to monitors the month wise energy consumption.

Recommendation

Considering all above facts we recommend the installation of Energy Monitoring System. Energy Monitoring System come with different software and parameters (regular and tailor made both) to best capture the process behavior. It has all the standard reports that one would expect from an EMS with following parameters:

- Real-time views & trends
- Historical views & trends
- Energy Reports
- Alarm Reports

The detail presentations of the parameters at standard screens and features make system understanding very easy. Once data is recorded, next time directly parameter will be captured for same quantity and material. This will lead to minimum variation of energy consumption with better control of parameter without human intervention. The one snapshot of report prepared is as below:

6. ANNEXURE

6.1 COPY OF ELECTRICITY BILL

30023093410	3042023030	E-N	Mail : 1912	@pspcl.in	CIN : U Invoice	Cum Bill C	of Supply	C033813 y for DS>1001 Duplicate for S	supplier			Page No: 1	
Circle		Division		Sub-Di			Bill C		Bill Date			Bill No.	
BHATINDA		A DIVI		UBURBAN S	UB DIVIS	ION	03/20		22.03.2	023		20747752	
Due Date of Payment (By Cash/Online):03.04.2023 Payment by Local Cheque/DD can be made Upto:03.04.2023					A	Admissible Supply Metering Contract Voltage Voltage Voltage 3002305 (KV) (KV) (KV) OLD: B			300230934 OLD: B450	ccount No.: 1 GC4500004 (A) Date			
Fo, M/s NEHRU MEM 3E COLLEGE ROAD MANSA-151505-ID Date of Connection Consumer GSTIN :	NDIA		State	: Punjab C	Code : 03	Intens Intens Ice Fa Gener	ctory/Candy al/Mush. Pr	R. & OTHER		03.04.2	112.444		
Nature of Industry:	MISCELLA	NEOUS (· · · · · ·		Seaso	nal		101.200				
									Canaci	ity: 5-10			
Place of Supply : Pl	B Reve	erse Cha	arge : N		er Make: L			Name Of Fee		ACD	Interest on		
(New) 22.03.2023	Reading Date		(Old) 2.02.2023	Period of Bill(I 28		Feeder Code		ge Road-F05L S/S DB10	Conn To	Security 20	81445	ACD & Securi	
MeterNo.Owner 19363713-PSPCL	Meter Status O		Meter Rea ew Status	Old Status	Meter Multipli	ier CTR		Mtr.Volt. Ratio	Overall Multiplier 2.00000	MMTS Correction	Addl.Supply Units	Consumption	
Last MCO Date	New Meter	MDI	6.714		1.0000	0 10/5	5/5	11000/110	2.00000			29	
		KVAH	110041.900 91687.100		4		-		2.00000			20	
CTPT 10288-PSPCL		KWH	91087.100	90078.200									
10288-PSPCL Last SJO Date	Old Meter	MDI KVAH		-									
21.02.2023 ZMSC		KWH									in		
Total KWH: 2018	L		KVAH: 2975	M	DI: 13.42	.9	PF:0.68	1	TOD on peak: 0		TOD Off P	eak : 0	
Contract Demar (L)KVA	nd Actua	ll Dema VA(A)	nd 80% of	f (L)KVA(B)	(A) I A or B w greater (arges Rate per KV (R)		illing Days(D)	Fixed C C*R*D*1	12/365 or	Amount Fixed Charge Amount(Rs.)	
General	G	eneral	(General	Gen		Gene		28	Gen 103			
112.444	1	3.429		89.96		89.96	12	25.00	20			10351	
					(B) I	Energy C	harges				E	nergy Charges (
То	otal KVAH			Tariff Rate					Amount General			inergy charger i	
	2975			General 6.63					19724			19724	
	1 march				(C)	Fuel Cost	Adj Cha	arges					
	KVAH Consumption			Rate of FCA/KV					Amou 0	int		FCA (Rs.)	
KV					-			444	0			0	
KVA				-	(D) Rate	Addition	al Surcha	irge***	Amou	int		Add. Surchar	
		tion			redu		0					Amount 0	
	AH Consump	otion							0			0	
	AH Consump	otion				Dent la							
KV/ Meter + CT/PT R for PSPCL Mete		unit re	ntal Rent	for any other quipment	Tota	Rentals	SGS		CGST		nt with Tax		
KV			ntal Rent	for any other quipment	Tota 1	ll rent ,264.00	1	ST 13.76				Total Rent (R 1,491.5	
KV/ Meter + CT/PT R for PSPCL Mete		unit re	ntal Rent	for any other quipment	Tota 1	l rent ,264.00 Surcharg	les 1	13.76	CGST 113.76	1	,491.52		
KV/ Meter + CT/PT R for PSPCL Mete 1264	ent MCB	000 obltage S	E	quipment	Tota 1 (F) 5	l rent ,264.00 Surcharg	es mand Surch Rate of	13.76 harge Amount of	CGST 113.76 TC Peak Hours		491.52		
KV/ Meter + CT/PT R for PSPCL Mete 1264 Admissible Voltage	ent MCB er Vc Actual S Volta	000 000 001 001 001 001 001 001 001 000	E	quipment	Tota 1 (F) 5	ll rent ,264.00 Surcharg De	es mand Surch	13.76 harge Amount of Demand surch	CGST 113.76	DD Surcharge	491.52	1,491.: Total Surcharge	
KV/ Meter + CT/PT R for PSPCL Met 1264 Admissible	tent MCB	000 000 001 001 001 001 001 001 001 000	E	quipment	Tota 1 (F) 5	ll rent ,264.00 Surcharg De Demand in	es mand Surch Rate of Demand	13.76 harge Amount of Demand surch	CGST 113.76 TCC Peak Hours (6 PM to	DD Surcharge	491.52	1,491.	
KV/ Meter + CT/PT R for PSPCL Mete 1264 Admissible Voltage	ent MCB er Vc Actual S Volta	000 000 001 001 001 001 001 001 001 001	E	quipment	Tota 1 (F) S e Surch. bunt	d rent ,264.00 Surcharg Demand in Excess Rebates	es mand Surch	13.76 Amount of Demand surch	CGST 113.76 TC Peak Hours (6 PM to 10PM)	DD Surcharge	491.52	1,491.	

15th September, 2022

6.2 **REGISTRATION OF FIRM WITH BEE**

ऊर्जा दक्षता ब्यूरो (भारत सरकार, विद्युत मंत्रालय) BUREAU OF ENERGY EFFICIENCY (Government of India, Ministry of Power)

17/05/ESCO/22-23/4341-420

Shri Hardeep Kaur Partner Indona Innovative Solutions &W-11, Railway Road, Opposite Onkar Feed Store Dinanagar, District Gurdaspur, Punjab- 143531

Sub: Empanelment of Energy Service Company (ESCO)

Dear Sir,

This has reference to your application for empanelment/ re-empanelment as an Energy Service Company with BEE in response to our advertisement for re-empanelment and fresh empanelment of ESCOs in the month of May, 2022.

Consequent to scrutiny and evaluation of your documents by SEBI accredited Grading Agencies CRISIL/CARE Advisory/ICRA Analytics/SMERA/ IRR Advisory in terms of the approved parameters for evaluation, BEE is pleased to inform that your company Indona Innovative Solutions has qualified for empanelment with BEE as a Grade 3 Energy Service Company (ESCO). This empanelment would be effective from 16th August, 2022 and will be valid till 15th August, 2024.

Further, the list of all the empanelled ESCOs along with grade assigned is uploaded on its website (<u>www.beeindia.gov.in</u>) for use by State/Central government/Public Sector agencies as well as by any other agency interested in implementing energy efficiency projects on ESCO mode. Please acknowledge your acceptance to this letter.

रचडित एवं राष्ट्रडित में रूपी बचाएँ Save Energy for Bonefit of Self and Nation चीमा तज, सेना भनन, आरक केक पुरष, न्दू दिल्ली–110 088, वेबसाईट/Website : www.beeindia.gov.in 4th Floor, Seven Bhawan, R.K. Puram, New Delhi-110 088, देली/Tal : 91 (11) 26766700, केला/Fac: 91 (11) 28178352

Prepared by Indona Innovative Solutions

6.3 ISO CERTIFICATE OF THE FIRM

6.4 LIST OF VENDORS

For Interlocking and Automation

- Monaco Energy
- Indona Innovative Solutions
- ENCON India Pvt. Limited

For Energy Efficient Lighting

- EESL
- RL Consumer Products
- Philips India Limited
- Avni Energy Solutions Pvt Ltd

For Energy Efficient Lighting

- EESL
- Sawhney Electrical Works
- M.G Engineers

For SPV

- Azure Power India Private Limited
- Acme Roof Top Systems Private Limited
- Ujaas Energy Limited
- M/S Mittal Machines Pvt Ltd

6.5 ONSITE MEASUREMENTS

-----End of Report-----End of Report-----